Exercise 9

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
y^{\prime \prime}-y^{\prime}=x e^{x}, \quad y(0)=2, \quad y^{\prime}(0)=1
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
y_{c}^{\prime \prime}-y_{c}^{\prime}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r x}-r e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}-r=0
$$

Solve for r.

$$
\begin{gathered}
r(r-1)=0 \\
r=\{0,1\}
\end{gathered}
$$

Two solutions to the ODE are $e^{0}=1$ and e^{x}. By the principle of superposition, then,

$$
y_{c}(x)=C_{1}+C_{2} e^{x} .
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
y_{p}^{\prime \prime}-y_{p}^{\prime}=x e^{x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is a polynomial of degree 1 multiplied by an exponential function, the particular solution would be $y_{p}=(A+B x) e^{x}$. But because $A e^{x}$ is already a solution of the complementary solution, x is multiplied by this trial function: $y_{p}=x(A+B x) e^{x}$.
$y_{p}=\left(A x+B x^{2}\right) e^{x} \quad \rightarrow \quad y_{p}^{\prime}=(A+2 B x) e^{x}+\left(A x+B x^{2}\right) e^{x} \quad \rightarrow \quad y_{p}^{\prime \prime}=(2 B+A+2 B x) e^{x}+\left(A+2 B x+A x+B x^{2}\right) e^{x}$
Substitute these formulas into equation (2).

$$
\begin{gathered}
{\left[(2 B+A+2 B x) e^{x}+\left(A+2 B x+A x+B x^{2}\right) e^{x}\right]-\left[(A+2 B x) e^{x}+\left(A x+B x^{2}\right) e^{x}\right]=x e^{x}} \\
(A+2 B) e^{x}+(2 B) x e^{x}=x e^{x}
\end{gathered}
$$

Match the coefficients on both sides to get a system of equations for A and B.

$$
\left.\begin{array}{r}
A+2 B=0 \\
2 B=1
\end{array}\right\}
$$

Solving it yields

$$
A=-1 \quad \text { and } \quad B=\frac{1}{2}
$$

which means the particular solution is

$$
y_{p}=x\left(-1+\frac{1}{2} x\right) e^{x}
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{1}+C_{2} e^{x}+x\left(-1+\frac{1}{2} x\right) e^{x},
\end{aligned}
$$

where C_{1} and C_{2} are arbitrary constants. Differentiate it with respect to x.

$$
y^{\prime}(x)=C_{2} e^{x}+(-1+x) e^{x}+\left(-x+\frac{1}{2} x^{2}\right) e^{x}
$$

Apply the boundary conditions to determine C_{1} and C_{2}.

$$
\begin{aligned}
y(0) & =C_{1}+C_{2}=2 \\
y^{\prime}(0) & =C_{2}-1=1
\end{aligned}
$$

Solving the system yields $C_{1}=0$ and $C_{2}=2$. Therefore,

$$
y(x)=2 e^{x}+x\left(-1+\frac{1}{2} x\right) e^{x} .
$$

